Optofluidic trapping and transport on solid core waveguides within a microfluidic device.

نویسندگان

  • Bradley S Schmidt
  • Allen H Yang
  • David Erickson
  • Michal Lipson
چکیده

In this work we demonstrate an integrated microfluidic/photonic architecture for performing dynamic optofluidic trapping and transport of particles in the evanescent field of solid core waveguides. Our architecture consists of SU-8 polymer waveguides combined with soft lithography defined poly(dimethylsiloxane) (PDMS) microfluidic channels. The forces exerted by the evanescent field result in both the attraction of particles to the waveguide surface and propulsion in the direction of optical propagation both perpendicular and opposite to the direction of pressure-driven flow. Velocities as high as 28 mum/s were achieved for 3 mum diameter polystyrene spheres with an estimated 53.5 mW of guided optical power at the trapping location. The particle-size dependence of the optical forces in such devices is also characterized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optofluidic Manipulation with Sub-wavelength Scale Photonics

Optofluidic transport represents the fusion of optics with microfluidics to create a new paradigm for nanoscale transport. Optofluidic transport exploits the favorable transport properties of light for the manipulation of objects in nanoscale systems. Here we demonstrate, for the first time, trapping and confinement of dielectric nanoparticles (75 and 100 nm polystyrene nanoparticle beads) usin...

متن کامل

Stability analysis of optofluidic transport on solid-core waveguiding structures.

Optofluidic transport involves the use of electromagnetic energy to transport nanoparticles through the exploitation of scattering, adsorption and gradient (polarization) based forces. This paper presents a new approach to stability analysis for a system of broad applicability to such transport, namely the optical trapping of dielectric particles in the evanescent field of low index (polymer) a...

متن کامل

Flexible optofluidic waveguide platform with multi-dimensional reconfigurability

Dynamic reconfiguration of photonic function is one of the hallmarks of optofluidics. A number of approaches have been taken to implement optical tunability in microfluidic devices. However, a device architecture that allows for simultaneous high-performance microfluidic fluid handling as well as dynamic optical tuning has not been demonstrated. Here, we introduce such a platform based on a com...

متن کامل

Dynamic manipulation of particles via transformative optofluidic waveguides

Optofluidics is one of the most remarkable areas in the field of microfluidic research. Particle manipulation with optofluidic platforms has become central to optical chromatography, biotechnology, and μ-total analysis systems. Optical manipulation of particles depends on their sizes and refractive indices (n), which occasionally leads to undesirable separation consequences when their optical m...

متن کامل

Forces and transport velocities for a particle in a slot waveguide.

Optofluidic transport seeks to exploit the high-intensity electromagnetic energy in waveguiding structures to manipulate nanoscopic matter using radiation pressure and optical trapping forces. In this paper, we present an analysis of optical trapping and transport of sub-100 nm polystyrene and gold nanoparticles in silicon slot waveguides. This study focuses on the effect of particle size, part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 15 22  شماره 

صفحات  -

تاریخ انتشار 2007